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An experimental and theoretical study of standing waves in a rotating tire is
presented. A test set-up for studying small balloon tires is described. Experimental
observations of standing waves arising after a critical speed transition are
presented, including measurements of the spatial structure of the standing waves.
A simple model for the tire is developed, which has a single degree of freedom at
each radial location. Steady state solutions at any rotation speed are governed by
a non-linear boundary value problem, which is studied in detail. Appropriate
boundary conditions are obtained using asymptotic arguments, and then used in
numerical solutions. The analysis is shown to agree well with the experimental
observations. Based on the analysis, a method for suppressing the standing waves is
proposed and con"rmed experimentally. ( 1999 Academic Press
1. INTRODUCTION

The phenomenon of standing waves in tires, which occur when the tire rotates
faster than some critical speed, has been the subject of many papers. In addition to
its intrinsic interest as a problem in the dynamics of solids, the critical speed
phenomenon represents a serious performance limitation for high-speed vehicles,
since the large strains associated with the standing waves invariably lead to
signi"cant working of the tire material and hasten tire failure. Useful reviews can be
found in reference [1], which covers work prior to 1970, as well as in reference [2],
which brings together many issues related to tires, from materials to dynamics.

Theoretical work relevant to vibrations and waves in tires ranges from analytical
or combined numerical/analytical studies of continuum equations for ring-type
models [3}12], toroidal membrane models [13] and thin shell models [14], to
numerical studies using "nite elements [15}20]. Experimental studies have
predominantly dealt with the modal analysis of non-rotating tires [6, 11, 21}23].
Dynamic sti!nesses have been evaluated experimentally on a small-scale tire [3],
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1050 A. CHATTERJEE E¹ A¸.
and full-scale dynamometer test rigs have been used to determine critical speeds on
aircraft tires [19, 24, 25]. In reference [25], a sensitive MoireH fringe technique
was used to visualize the formation of standing waves and hence determine the
critical speed. Finally, in reference [26], a tire modelled as a tensioned band on
a viscoelastic foundation was examined at speeds well below the critical speed to
investigate the e!ects of damping on rolling resistance.

In this paper, we present a combined experimental and theoretical study of tire
standing waves in perhaps the simplest type of peneumatic tire. In the literature,
standing waves have been interpreted variously (and somewhat confusingly) as
resulting from shocks, resonances, or instabilities. Based on our experiments and
an asymptotic analysis of our model, we "nd none of these interpretations to be
completely satisfactory. We "nd, however, that the appearance of standing waves
does approximately coincide with the appearance of a shock at the leading edge of
contact, for the balloon tires studied here (though the shock neither causes, nor has
any in#uence on, the standing wave). Small amounts of shear dissipation and/or
#exural rigidity destroy the sharpness of (or &&regularize'') the shock. The resonance
interpretation succeeds in predicting the correct critical speed, but several other
aspects of the system behavior are not consistent with the usual view of resonance.
The instability interpretation does not seem meaningful because there is no
non-oscillatory solution (i.e., without a standing wave) that loses stability to give
rise to the standing wave solution: when the oscillatory solution appears, the
non-oscillatory solution ceases to exist.

The "rst part of this paper deals with experiments run on an inexpensive tire test
rig designed and built in our laboratory to run small (4)5 in or 11)43 cm in diameter)
pneumatic balloon tires. Images grabbed from live video are processed to extract
the spatial structure of standing waves observed in the tires. Spatial frequencies and
spatial attenuation rates for the standing wave are estimated for four di!erent tire
pressures, and the results are shown to be in good qualitative agreement with
numerical results of previous researchers.

In the second part of this paper, we present a simple model for the rotating
balloon tire with ground contact. Normally, one might think that only membrane
e!ects would be important in the study of balloon tires. However, as we show in
the analysis, the small amount of #exural rigidity present in real balloon tires is
important for understanding the structure of the observed standing waves. Steady
standing wave solutions at any "xed speed are governed by a non-linear boundary
value problem, which is analyzed in detail using singular perturbation methods.
The qualitative predictions of the model compare quite well with the experimental
observations. Furthermore, the utility of the model is demonstrated by a "nal
experiment in which it is shown how it is possible to suppress the standing waves.

The analytical treatment of standing waves presented here is di!erent from other
studies in the literature which interpret results using natural frequencies and mode
shapes [10], or which use wave propagation ideas [13], in that we explicitly and
analytically formulate the non-linear boundary value problem associated with
steady state rolling conditions. The model captures the essential qualitative
behavior of radial displacements of the rotating tire crown, even though it is not as
detailed as, say, "nite element models (see, e.g., references [16, 18]). The present
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version of the model might be less appropriate for tires which have substantial
#exural rigidity. For such tires, ring-on-elastic-foundation type models (see, e.g,
references [8, 9]) might be more e!ective, or at least quantitatively more accurate.
Nevertheless, consideration of our model provides substantial insight into
the fundamental mechanics of contact-induced standing waves in rotating
axisymmetric systems. Such insight is often obscured by more detailed, usually
numerical, models. Furthermore, the approach presented in this paper can, in
principle, be extended to more general cases.

The rest of this paper is organized as follows. Sections 2 and 3 describe the
experimental set-up and our experimental observations. Sections 4}8 present
a simple model for the tire, and a detailed analysis of the model including
qualitative comparisons with experimental results. In Section 9, we discuss the
question of the physical origin of standing waves in dissipative tires. Section 10
describes a "nal experiment that demonstrates the possibility of suppressing the
standing waves, as predicted by the model. Finally, in Section 11, we present our
conclusions.

2. EXPERIMENTAL SET-UP

The apparatus shown in Figure 1 was used to study small balloon tires of the
type used for large-scale radio-controlled model aircraft. The toroidal tires have
a diameter of 11)43 cm (4)5 in), and a nominal wall thickness of 0)127 cm (0)05 in).
The tire is mounted on a hub which is itself mounted directly on a motor shaft. This
Figure 1. The test rig with ballon tire mounted above the #ywheel. The infrared thermocouple and
manual speed control are visible to the right of the tire. An optical displacement probe is visible at
lower left.
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direct drive arrangement allows for rapid tire changes between experiments. The
motor is a 10 000 rpm or 167 Hz (max) permanent magnet unit with a maximum
torque of 0)353 N m (3)125 in lb) at 5)5 A. The tire makes contact with a 7)62 cm
(3)0 in) diameter solid aluminum #ywheel mounted on ball bearings. The distance
between the motor shaft centerline and #ywheel surface is "xed at 4)62 cm (1)82 in).
The speed of the motor is controlled manually using a Variac.

An optical infrared thermocouple with a sensitivity of $0)53C is used to
measure the temperature at a location along the circumference of the tire with
a spatial resolution of about 2)5 cm (1 in). An optical displacement probe can be
used to monitor surface vibrations of the tire at various locations around the
circumference of the tire. All sensor output is low-pass "ltered and acquired by
a 12-bit data acquisition system, with a maximum aggregate 100 kHz data rate.
A digital encoder used to measure tire angular velocity outputs 4 pulses per
revolution, which provides an accuracy of about 0.3% or better in the speed range
of interest.

A CCD camera coupled to a video frame grabber is used to obtain quantitative
measurements of tire shapes at various speeds. Video images taken with the line of
sight along the axis of tire rotation are captured digitally to look at tire motions
frame by frame. The captured images are processed to extract the tire boundary for
further analysis, allowing, for example, standing wave wavelength and spatial
attenuation rates to be estimated. The current video system is suitable only for
studying steady standing wave patterns: it does not have the frame rate needed to
study the transient dynamics of the tire.

This experimental set-up is inexpensive and quite convenient for studying tire
standing waves: power requirements are low, the system is quiet, and thus the data
is relatively clean. Furthermore, the relatively low energies involved in spinning up
the small-scale tires makes the system quite safe.

3. EXPERIMENTAL OBSERVATIONS

Experiments were conducted on tires in#ated to pressures of 10)3, 15)5, 20)7, and
25)9 kPa (1)5, 2)25, 3)0, and 3)75 psi). For each "xed pressure, runs were started with
a new tire at rest and ambient temperature. The motor speed was increased in small
increments and held until the short-term mechanical (but, as discussed below, not
necessarily thermal) steady state was reached. Video images were then obtained
using the frame grabber. At the same time, vibration and temperature data were
automatically collected for later use, as needed. This procedure was repeated until
each tire failed, usually in about 20 steps. The time required to run each tire through
the entire process ranged from about 300 to 500 s. During the procedure, the
transition through the critical speed and the development of standing waves are
clearly visible. Once standing waves have developed, the tires undergo signi"cant
deformation before failure, as can be seen by overlaying video images at low and
high speeds, as shown in Figure 2 (left). However, despite the large deformations
involved, the displacements of the tire crown remain predominantly radial, as
shown in Figure 2 (right).



Figure 2. Deformation kinematics after the onset of standing waves: (a) overlay of images taken at
rest and above the critical speed, showing the magnitude of tire deformations and the increase in the
contact patch area; (b) image taken with a strobe, showing that a white radial line on the tire remains
approximately straight and radial as it rotates. The tires in both "gures are rotating clockwise.
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Image processing software was used to process the raw 240]360 pixel, 8-bit
color video images. After converting the images to grey scale and performing
a contrast enhancement to make the tire boundary stand out, edge detection
software was used to extract the tire boundary and store it on disk. At this point,
the data consist of a relatively small number of individual (x, y) pairs located in
a 240]360 grid. Figure 3 shows the results for rotation speeds below and above the
critical speed for the 15)5 kPa (2)25 psi) initial pressure case.

By locating the center of the wheel, the data can be transformed into polar
co-ordinates. After low-pass "ltering the results to eliminate noise caused by the
pixelization and camera/tire jitter, the spatial data can be presented in the waterfall
plot of Figure 4. Plotted this way, the variation in the amplitude, wavelength, and
spatial attenuation of the large-amplitude standing waves just after the contact
patch can be seen as a function of tire angular velocity. The results shown in Figure
4 are qualitatively similar to the "nite element solutions obtained in references [15,
16]. An apparently special feature of standing waves in balloon tires, seen in the
plots, is the appearance of small amplitude &&ripples'' just ahead of the contact patch.
These ripples are most clearly visible just below the speed at which large-amplitude
standing waves appear, but are not so clearly present at substantially higher speeds.

By directly using the pixel data, the global deformation properties of the tires can
be computed. In Figure 5, the average tire radius and average circumferential strain
(relative to the zero velocity con"guration) are shown as a function of tire angular
velocity. We remark that the shapes of the curves can be qualitatively understood
merely by considering the dynamics of a single sprung mass attached to a rotating
base. This observation, together with the observation of essentially radial
displacements of the tire crown, motivate the model developed in the next section.

To obtain a simple quantitative measure of the spatial properties of the standing
waves, the standing wave patterns of Figure 4 were fast Fourier transformed, and



Figure 3. Tire shapes extracted from video data for the case with initial pressure equal to 15)5 kPa
(2)25psi). The tire is rotating clockwise.

Figure 4. Waterfall plot showing the development of standing waves as tire angular velocity
increases for the 15)5 kPa (2)25 psi) initial pressure case. All displacements are given relative to the
average tire radius (see Figure 5) for a given speed. The region from the minimum in each plot near the
203 position on the tire circumference to the next maximum on either side is the contact patch.
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Figure 5. Global deformation versus tire angle velocity: (a) average radial displacement of the tire
crown; (b) average circumferential strain relative to rest con"guration. The symbols represent the
di!erent initial pressures in kPa (psi); L, 10)3 (1)5); * 15)5 (2)25); # 20)7 (3)0); ] 25)9 (3)75).

Figure 6. Spatial characteristics of tire standing waves: (a) average spatial frequency vs. tire angular
velocity; (b) measure of spatial attenuation of the standing waves using the average logarithmic
decrement. See Figure 5 for symbol legend. Each curve starts just past the corresponding critical
speed.
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the "rst peak was taken to be the characteristic spatial frequency for each tire speed.
The "rst speed at which this peak exceeded a "xed threshold was taken to de"ne
the critical speed experimentally. Figure 6 shows that the characteristic spatial
frequency of the standing waves decreases with the tire angular velocity, and that
the rate of this decrease is larger for higher pressures. This is qualitatively in
agreement with earlier numerical work, particularly reference [15]. A simple
measure of the spatial attenuation rate of the standing waves was obtained using
the average logarithmic decrement of successive peak-to-peak amplitudes in the
standing waves. In Figure 6 we see that at all pressures the attenuation is high right
after the critical velocity, but drops o! in magnitude (i.e., becomes less negative) as
the angular velocity is increased.



Figure 7. Critical speed for the onset of standing waves as a function of initial in#ation pressure.

Figure 8. Temperature just after the contact patch: (a) temperature versus time; (b) temperature
versus angular velocity for the same pressures. In the latter "gure, the sharp rise in temperature just
after the critical speed is readily apparent in the "gures. See Figure 5 for symbol legend.
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The resulting critical speeds are shown in Figure 7 for all four tire pressures.
That the critical speed is found to be an increasing function of tire pressure is not
surprising in the light of earlier work that related the critical speed to the natural
frequencies of the tire [12, 15, 16, 20], in that increased internal pressure raises the
eigenfrequencies. However, as we will discuss later, contact-induced standing waves
are not clearly interpretable as resonance phenomena.

As mentioned earlier, the procedure used during most of the experimental runs
did not consider the time necessary for the tire to reach thermal equilibrium. This
was done in order to allow large deformation data to be collected before the tire
failed. Nevertheless, despite this lack of direct control over the thermal history
of each specimen, the experiments were carried out with su$cient consistency to
keep the time}temperature histories for the various runs approximately the same,
as shown by the data in Figure 8 (left). Further insight into the mechanical
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consequences of the standing waves can be obtained by plotting the temperature as
a function of tire angular velocity. As shown in Figure 8 (right), the tire
temperatures remain approximately constant (at room temperature) until just after
the critical speed, whereupon the temperature is seen to rise dramatically with
increasing speed due to the large amount of work put into the tire material by the
standing-wave-induced strain cycles. Note that for all of the temperature data
shown, the infrared thermocouple was aimed just after the contact patch, at the
portion of the tire which has just been released from the #ywheel.

We conclude this section by summarizing the essential qualitatives features of the
standing wave phenomena as follows:

(1) As the steady rotation speed is increased, the tire expands radially. The size of
the contact region grows.

(2) Past some critical speed, small-amplitude, small-wavelength, standing waves
(&&ripples'') are formed near the leading edge of the contact region, i.e., &&ahead''
of the contact patch. The amplitudes of these waves decay rapidly with
increasing distance from the leading edge.

(3) At a slightly higher speed, larger standing waves appear near the trailing edge
of the contact region, i.e., &&behind'' the contact patch. These waves have
amplitudes that decay with increasing distance from the trailing edge at a rate
signi"cantly lower than that of the ripples.

(4) As the rotation speed is further increased, the amplitude and wavelength of
the trailing edge standing waves increases while the spatial decay rate along
the circumference decreases.

(5) Throughout each experiment, radial sections in the tire remain radial to
a good approximation, as shown in Figure 2. The temperature of the tire rises
steadily with speed, until the tire eventually fails.

4. MODEL FORMULATION

We now present a model for the system examined in the previous sections. This
model is a simpli"cation of the toroidal membrane model of reference [13], in that
a single-mode approximation is used for the displacements in any given radial
plane. The model may also be thought of as the continuum limit of the system
shown schematically in Figure 9. The kinematic assumption of purely radial
displacements is supported by our observations of the experimental system (recall
Figure 2 (right)). As in the experimental system, the center of the rotating wheel is
assumed to be held at a "xed height h above the ground. For simplicity, here we
assume that h"R, the undeformed tire radius. In a co-ordinate system "xed to the
tire, this system may be described by the partial di!erential equation

o6 uN q6 q6!o6 u6 2 (R#uN )"!kM uN !f1
1
uN q6#KM uN hh#f1

2
uN hhq6!PM (h, q6 ), (1)

where uN is the radial displacement (positive outwards), h is the angular position on
the tire, q6 is time, and the h and q6 subscripts denote partial derivatives. The various
parameters have the following physical signi"cance: o6 is the e!ective mass per unit



Figure 9. Schematic diagram motivating the continuum model of equation (1) (radial displacements
only).
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angle (h), R is the nominal radius of the undeformed tire, kM is the resistance to purely
radial deformation (or &&radial sti!ness''), KM is the resistance to relative radial
deformation (or &&shear sti!ness''), f1

1
is the viscous resistance to purely radial

motions (&&radial damping''), f1
2

is the viscous resistance to relative radial motions
(&&shear damping''), and u6 is the angular velocity of the tire. PM represents any
externally applied, radially directed, distributed force (PM is taken to be positive
when it is radially inwards).

Note that the sign conventions for uN (positive outwards) and PM (positive inwards)
are in accordance with the physical situation (the tire expands outwards, while the
contact force acts inwards). An obvious consequence of this is that (see equation (1))
for a non-rotating tire with a uniform positive external loading PM

0
acting on its

entire circumference, the steady state solution uN "!PM
0
/kM is negative.

By non-dimensionalization of equation (1), we obtain

uqq!u2 (1#u)"!u!f
1
uq#Kuhh#f

2
uhhq!P (h, q), (2)

where the new non-dimensional variables and parameters are

u"
uN
R

, q"S
kM
o6

q6 , P"

PM
RkM

, u"S
o6
kM

u6 , f
1
"

f1
1

Jko6
, f

2
"

f1
2

JkM o6
and K"

KM
kM

.

The distributed contact force P (h, q) we will consider is that arising from the
contact between the rotating tire and the rigid ground. It is actually an unknown
constraint force. In other words, in the non-contact region, P,0, while in the
contact region, the shape of the ground (i.e., the constraint) determines P.



Figure 10. The contact region.
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Since we are interested in steady, standing wave solutions, we now introduce new
co-ordinates

/"h#uq and t"q.

In this new lab-"xed co-ordinate system, steady standing wave solutions are those
that are independent of time t. Such solutions satisfy the ordinary di!erential
equation

f
2
uu

(((
#(K!u2)u

((
!f

1
uu

(
!(1!u2)u#u2"P(/). (3)

Outside the contact region, u is described by equation (3) with P (/),0. Inside the
contact region, u is given by

u (/)"sec /!1 (4)

(see Figure 10), and P (/), which must satisfy P*0, can be found by substituting
the known u (/) of equation (4) into equation (3). Finding the endpoints of the
contact region (see Figure 10) is part of the problem at hand. We assume that
contact occurs over a single, connected region, i.e., we do not seek solutions where
contact occurs over two or more disjoint intervals.

Note that equation (3) is linear when restricted to either the contact region or the
non-contact region, although steady standing wave solutions of the system are
described by a non-linear boundary value problem: the non-linearity arises because
the extent of the contact region is not known in advance, depends on the as yet
undetermined solution u, and varies with the angular velocity u (i.e., the problem
has a &&free boundary'').

One might initially suppose that P"0 at one or both edges of the contact region.
That this need not be true may be seen from considering the static (non-rotating)
solution for the case when the tire is pressed by an amount d into the ground. In
that case, u(/)"(1!d)sec /!1 in the contact region, while outside the contact
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region P,0 and u satis"es the second-order ordinary di!erential equation
obtained by setting u"0 in equation (3). For small d, the size of the contact region
is also small. It is easy to show that in this small contact region, the distributed
contact force P+K'0. Thus, for slow enough rotation speeds (i.e., small enough
u), we expect P to be strictly positive at each edge of the contact region.

When the tire rotates with large enough u, it is possible that P might be zero at
a boundary point. On the other hand, P might also develop a concentrated force
with the form of a delta function at a boundary point. We demonstrate later in this
paper that both of these cases do occur. (A concentrated force is assumed to exist at
an edge of the contact region only if no solution can be found without one.)

We now examine the nature of solutions to the non-linear boundary value
problem as a function of the rotational velocity u. In Sections 5 and 6, we study the
cases of zero and non-zero shear damping respectively. In Section 7, we discuss the
e!ects of a small amount of #exural rigidity in the tire. In Section 8, we qualitatively
compare predictions of the model and experimental observations.

5. THE ZERO SHEAR DAMPING CASE

We "rst consider the case where the shear damping f
2
"0. We assume that the

radial damping f
1
'0. Equation (3) becomes

(K!u2)u
((
!f

1
uu

(
!(1!u2) u#u2"P(/). (5)

A similar equation appears in reference [26], except for a missing &&centrifugal''
e!ect which we include here.

In equation (5), we assume K(1, since from a simple static de#ection test
(described in the next section) we estimated K for our tire to be about 0)12.
Moreover, as shown in reference [13], for example, K is expected to be roughly
proportional to the square of the ratio of the cross-section radius to the radius of
the tire, so K(1 seems generally reasonable for balloon tires.

In equation (5), the coe$cient of the highest derivative change sign as u passes
through JK. We now examine the nature of solutions as u passes through this
critical value, u

c
"JK. (We will show later that standing waves actually appear at

a slightly higher speed than u
c
. In an experimental context, the critical speed is

taken to be the speed at which standing waves are "rst detectable. However, for
purposes of analysis, we take u

c
as &&the'' critical speed. The two speeds are the same

in the limit of small damping.)

5.1. CHARACTERISTIC EQUATION

Equation (5) is a linear, constant coe$cient equation. In the non-contact region,
it has solutions of the form

u(/)"
u2

1!u2
#C

1
e r

1
/
#C

2
e r

2
/ , (6)
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where r
1

and r
2

satisfy

(K!u2) r2!f
1
ur!(1!u2)"0. (7)

The roots of the above quadratic equation are

r
1,2

"

f
1
u$Jf2

1
u2#4 (K!u2) (1!u2)
2(K!u2)

. (8)

Note that the above expression allows a simple static indentation test to be used to
estimate K, since for u"0, the characteristic equation for equation (5) above has
roots $1/JK.

Clearly, oscillatory solutions cannot occur for u2(K. If u2"K, then we have
only one root, r"(K!1)/f

1
JK. For DK!u2 D@1, the two roots of the above

quadratic equation are well approximated by

r
1
"

K!1

f
1
JK

#O ( DK!u2 D) and r
2
"

f
1
JK

K!u2
#O(1). (9)

Note that for DK!u2 D@1 and for any "xed non-zero /, depending on whether
K is greater/less than u2, er

2
/ will be exponentially large/small. That is, as

D r
2
DPR, for any "xed /'0 and any integer n'0, e D r

2
D/AD r

2
Dn (see also, e.g.,

reference [27]).

5.2. BOUNDARY CONDITIONS

Given equation (6), along with appropriate boundary conditions, the solution
u(/) can be obtained numerically. The sole aim of this section is to establish the
required boundary conditions.

As mentioned earlier, the exact extent of the contact region is unknown. Let the
free (non-contact) region be between two points /

A
and /

B
, with 0(/

A
(/

B
(2n

(see Figure 10). Contact is assumed to occur at all points on the tire between /
B

and /
A
.

The general solution in the free (non-contact) region is given by equation (6). To
obtain a steady solution, we need to "nd the contact endpoint /

A,B
as well as

the unknown coe$cients C
1,2

. Using the condition of contact at each endpoint, we
obtain two equations,

sec /
A,B

!1"
u2

1!u2
#C

1
e r

1
/
A,B#C

2
e r

2
/
A,B . (10)

If there is no concentrated force at either edge of the contact region, then the slope
u
(

is continuous at each edge. This gives

sec/
A,B

tan /
A,B

"r
1
C

1
e r

1
/
A,B#r

2
C

2
er

2
/
A,B . (11)



Figure 11. The geometry of solutions with and without slope discontinuities at endpoints.
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On the other hand, if there is a concentrated force at one edge of the contact
region, then the slope is not continuous at that edge, we cannot use equation (11)
for that edge, and a di!erent boundary condition is needed.

We now consider these two cases separately. As we show, they occur below and
above critical speed, respectively.

5.2.1. Below critical speed

For u2(K, we can show that there cannot be a concentrated force at either
endpoint, /

A
or /

B
. This is because P (/) is restricted to be non-negative; hence,

a concentrated force would produce a discontinuity in u
(

with the slope increasing,
i.e., u`

(
'u~

(
(as seen by integrating equation (5)). A look at the contact geometry, as

shown in Figure 11, shows that such behavior is not allowed at either endpoint, /
A

or /
B
, since it would imply interpenetration between the tire and ground. Thus,

for u2(K, there are no concentrated forces at either endpoint, and the four
conditions (equations (10) and (11)) give the four unknown quantities C

1,2
and /

A,B
,

which determine the solution.
In reference [26], the same boundary conditions were initially presented as are

used here. Subsequently, an approximation was made using an extra symmetry
assumption, which simpli"ed the numerical solution procedure. We avoid that
approximation here.

5.2.2. Above critical speed

For u2'K, a concentrated force at either endpoint, /
A

or /
B
, would produce

a discontinuity in u
(

with the slope decreasing, i.e., u`
(
(u~

(
(as seen by integrating

equation (5)). A look at the contact geometry, as shown in Figure 11, shows that
such behavior is not precluded at either endpoint, /

A
or /

B
, since there would be no

interpenetration between the tire and ground. Thus, the possibility of concentrated
contact forces at either endpoint cannot be ruled out. The boundary conditions



Figure 12. Lower portion of tire pro"le from the last shape of Figure 3, at 67 Hz. The tire is
rotating clockwise.
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need to be re-examined for this case, since the slope conditions of equation (11) may
no longer apply.

As shown in Appendix A.1, slightly above critical speed, there appears
a concentrated contact force at the leading edge of contact, whereas, at the trailing
edge of contact, the distributed contact force P decreases to zero as the tire speed
approaches the critical speed from below. Thus, beyond the critical speed, it is
reasonable to adopt the new boundary condition of P"0 at the trailing contact
edge /

A
, and to drop the slope-continuity condition of equation (11) at the leading

contact edge /
B
.

Thus, for zero shear damping and above the critical speed, we use the boundary
conditions

u (/
A,B

)"sec /
A,B

!1, u
(
(/

A
)"sec/

A
tan /

A
and

u
((

(/
A
)"sec /

A
tan2/

A
#sec3/

A
, (12)

where u is given by equation (6). Equation (12) may be solved numerically to
obtain the four unknown quantities C

1,2
and /

A,B
, which determines the

solution.
The P"0 condition (or curvature continuity) at the trailing contact edge

is consistent with our experimental observations. See, for example, Figure 12,
which shows an enlargement of the lower portion of the last tire pro"le from
Figure 3. Here, the tire is rotating at 67 Hz, which is signi"cantly above the critical
speed. The leading contact edge is relatively much more sharply de"ned than
the trailing contact edge. The relatively smooth transition from contact to
non-contact at the trailing edge is consistent with the P"0 or curvature continuity
condition.

Furthermore, as shown in Appendix A.2, the boundary conditions adopted for
zero shear damping, both below and above critical speed, may also be derived by
considering the limit of small shear damping (we consider non-zero shear damping
in Section 6).

Finally, as an aid to intuition, a simple physical model demonstrating this
boundary condition is discussed in Appendix A.3.



Figure 13. Solutions near critical speed u2"K; here K"0)12, f
1
"0)03, u as labelled

(u
c
"J0)12+0)346).
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5.3. STANDING WAVE SOLUTIONS

Standing wave solutions exist if and only if the roots of the characteristic equation
are complex. For such solutions, we require that the discriminant (equation (8)) be
negative i.e.,

f2
1
u2#4 (K!u2) (1!u2)(0.

For K(u2(1, we "nd that the discriminant can be negative if the damping
f
1

is not too large. In addition, for su$ciently small damping, equation (8)
shows that the imaginary parts of r

1,2
can be very large for u2 very slightly larger

than K.
Note that complex roots r

1,2
will necessarily have negative real parts. Thus,

standing wave solutions will have amplitudes which decrease with distance from
the trailing edge of the contact region. This feature will typically be retained for
other contact geometries (such as, for example, a rotating tire in contact with the
surface of a counter-rotating rigid drum of "nite radius). The #atness, or otherwise,
of the ground does not a!ect the roots of the characteristic equation, though it
does a!ect the locations of the boundary points as well as the values of the
coe$cients C

1,2
.

Some numerically obtained results for the case K"0)12, f
1
"0)03 are shown in

Figure 13. The numerical solutions were obtained using the Newton}Raphson
technique with numerically estimated Jacobians, implemented in MATLAB. For
K"0)12, the critical speed u

c
"J0)12+0.346. As seen in the "gure, just under
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the critical speed (u"0)336), the solution is very close to the steady critical speed
solution u"u2

c
/(1!u2

c
)"K/(1!K)"0)136 for the case of no contact, except

for points in or close to the contact region. Just above the critical speed (u"0)355),
there are standing waves that are qualitatively similar to those observed
experimentally.

6. SOLUTIONS FOR NON-ZERO SHEAR DAMPING

It was shown in Section 5 that the rotating tire model, as given by equation (1),
predicts standing wave solutions beyond the critical speed if the shear damping
term is taken to be zero. In this section, we consider solutions for non-zero shear
damping. Not surprisingly perhaps, we "nd that a small amount of shear damping
does not change the basic nature of the standing wave solutions, though shear
damping does have a stronger attenuating e!ect than radial damping.

6.1. CHARACTERISTIC EQUATION

The radial displacement u satis"es equation (3), with the distributed contact
force P (/)"0 in the free (non-contact) region. The associated characteristics
equation is

f
2
ur3#(K!u2)r2!f

1
ur!(1!u2)"0. (13)

In order to have standing wave solutions at some rotation speed u, we require
two of the roots of the characteristic equation to be complex. For the standing
waves to have decaying amplitude with increasing distance from the trailing edge of
the contact region, the two complex roots must have negative real parts. As
discussed earlier, while the contact or boundary conditions determine the location
and extent of the contact region, and can in#uence the amplitude of the standing
wave, the wavelength and spatial attenuation rate are determined solely by the
roots of the characteristic equation.

We assume light damping (f
1

and f
2

comparable, and very small compared to 1).
Not too close to the critical speed u

c
"JK, equation (13) is a singularly perturbed

quadratic equation in r. Thus, two of its roots will be the roots of that original
quadratic equation perturbed slightly by O(f

2
) amounts, while the (new) third root

will be O(1/f
2
) or large in magnitude (see, e.g., reference [27]).

By a straightforward calculation (see, e.g., reference [27]), we "nd that not too
close to the critical speed, the roots of the characteristic equation are

r
1,2

"$S
1!u2

K!u2
#O(f) and r

3
"!

K!u2

f
2
u

#O(f), (14)

where the small correction term of O(f) represents terms of order f
1

and/or f
2
.

Below the critical speed, all three roots are real. The introduction of the small
shear damping term does not change the solution much except for the addition of
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a real root r
3

of large magnitude. Oscillatory solutions, or standing waves, do not
occur.

On the other hand, the leading-order expressions for r
1,2

are purely imaginary
above critical speed. This shows that standing waves persist in the presence of small
damping. In order to see how they are spatially attenuated due to damping, we need
a higher order approximation. At the next order of approximation, we "nd

r
1,2

"!

u
2(u2!K) Af1#

1!u2

u2!K
f
2B$i S

1!u2

u2!K
#O (f2), (15)

showing that standing waves decay in the same direction as for the case of zero
shear damping. It is interesting to note that the e!ect of the shear damping f

2
will

be stronger than that due to the radial damping f
1

since (1!u2)/(u2!K) is large
in the speed range of interest (e.g., for K"0)12, even for u"1)3u

c
or 30% above

critical speed, (1!u2)/ (u2!K)+9.6).
Finally, note in equation (14) that the third root r

3
is clearly large and positive

su$ciently far above the critical speed, and large and negative su$ciently far below
critical speed.

6.2. BOUNDARY CONDITIONS

Solutions to equation (3) in the non-contact region are of the form

u (/)"
u2

1!u2
#C

1
e r

1
/
#C

2
er

2
/
#C

3
er

3
/ , (16)

where r
1,2,3

satisfy the characteristic equation, equation (13). As before, let the
endpoints of the contact region be /

A
and /

B
, with 0(/

A
(/

B
(2n.

For non-zero shear damping f
2

and rotation speed u, it can be seen by
integrating equation (3) that a concentrated contact force at an endpoint of the
contact region produces a discontinuity in u

((
. In particular, u

((
increases by an

amount O (f
2
u). The geometry of the contact region is such that if u

((
changes

discontinuously at an endpoint of the contact region, then it can only decrease
at the left endpoint /

A
and increase at the right endpoint /

B
(otherwise,

interpenetration would occur between tire and ground). This means that
a concentrated contact force, if any, must exist at /

B
and not /

A
, and that u

((
is

continuous at /
A
.

There are "ve unknowns, the endpoints /
A,B

and the coe$cients C
1,2,3

. To
determine these, we have two conditions of contact or continuity of displacement u,
two conditions on continuity of slope u

(
, and one condition on continuity of

curvature u
((

at the left endpoint /
A
.

u(/
A,B

)"sec/
A,B

!1, u/(/A,B
)"sec/

A,B
tan/

A,B
and

u
((

(/
A
)"sec/

A
tan2/

A
#sec3/

A
, (17)



Figure 14. Standing wave solutions with nonzero shear damping: K"0)12, f
1
"0)03, f

2
"0)003,

u as labelled.
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where u is given by equation (16). Solving these equations numerically, we can
simultaneously determine the extent of the contact region as well as displacements
in the non-contact region. As before, the numerical solutions were obtained using
the Newton}Raphson technique with numerically estimated Jacobians, implemented
in MATLAB.

6.3. STANDING WAVE SOLUTIONS

Numerically obtained steady solutions for rotation speed u close to the critical
speed u

c
"JK are shown in Figure 14. As discussed in the previous section, the

damping e!ect of f
2

is stronger than that of f
1
, especially near the critical speed.

Figures 13 and 14 show that a rather small value of f
2

(one-tenth of f
1
) has

a marked e!ect on both the amplitude as well as attenuation rate of standing wave
solutions. Thus, in an experimental context, standing waves will "rst be observed at
a speed larger than the theoretically determined value of u

c
.

7. THE INFLUENCE OF NON-ZERO FLEXURAL RIGIDITY

The model of the balloon tire studied in previous sections allows standing wave
solutions that decay in amplitude with increasing distance from the trailing edge of
the contact region, much as observed in experiments. However, as mentioned in the
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introduction, the experimental system near the critical speed also develops small,
sharply decaying ripples near the leading edge of the contact region. In this section,
we describe how such an e!ect can be due to a small &&beam-like'' or #exural rigidity
term.

We assume that the non-dimensional #exural rigidity is much smaller than the
damping e!ects. Guided by previous results, we further assume that the shear
damping is much smaller than the radial damping which in turn is small compared
to 1. Accordingly, we modify the non-dimensional equation (2) to

uqq!u2 (1#u)"!u!eg
1
uq#Kuhh#e2g

2
uhhq!e3u

((((
!P(h, q), (18)

where the radial damping term f
1
"eg

1
, the shear damping term f

2
"e2g

2
, and the

non-dimensional #exural rigidity is e3, for some suitable 0(e@1. As before, we
write the ordinary di!erential equation describing steady standing wave solutions
in lab-"xed co-ordinates,

!e2u
((((

#e2g
2
uu

(((
#(K!u2) u

((
!eg

1
uu

(
!(1!u2)u#u2"P(/).

(19)

The characteristic equation associated with equation (19) is

!e3r4#e2g
2
ur3#(K!u2) r2!eg

1
ur!(1!u2)"0. (20)

We do not conduct a complete analysis of equation (20). Our main interest here is
to discuss the e!ect of the small #exural rigidity term on the nature of possible
standing wave solutions. In particular, to illustrate how ripples near the contact
edge arise, we examine the simplest case when u is not too close to the critical speed
JK (i.e., where K!u2 can be treated as O(1) compared to e).

Equation (20) has four roots, two of which are slightly (i.e., O(e2)) perturbed
versions of the already familiar roots of the quadratic equation (see equation (7))

(K!u2) r2!eg
1
ur!(1!u2)"(K!u2) r2!f

1
ur!(1!u2)"0.

The other two roots are &&large'', and are approximated as follows. First, we
assume that the roots are of the form r"j/es, where j"O(1) and s'0 is to be
determined. Substituting into equation (20), we obtain

!e3~4s j4#e2~3s g
2
uj3#e~2s(K!u2)j2!e1~sg

1
uj!(1!u2)"0.

To determine s, we note that no single term in the equation can be asymptotically
bigger than all the others. Balance between the two largest terms occurs for s"3/2,
and we obtain

!e~3 j4#e~5@2g
2
uj3#e~3(K!u2) j2!e~1@2g

1
uj!(1!u2)"0.

Multiplying through by e3, we obtain

! j4#e1@2 g uj3#(K!u2) j2!e5@2g uj!e3 (1!u2)"0.

2 1
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which we write as

!j4#e1@2g
2
uj3#(K!u2) j2#O (e5@2)"0.

Temporarily ignoring the small O(e5@2) term, we note that the above fourth order
equation has two roots equal to zero; these are merely the O(1) roots disguised
by the singular scaling. Solving a quadratic to obtain the other two roots and
returning to the old variable r, we obtain

r
3,4

"

g
2
u

2e
$S

g2
2
u2

4e2
!

u2!K
e3

#O(e),

which in terms of system parameters is

r
3,4

"

f
2
u

2e3
$S

f2
2
u2

4e6
!

u2!K
e3

#O(e) . (21)

It is worthwhile to brie#y examine equation (21) using a numerical example.
We pick K"0)12, f

1
"0)03, f

2
"2)0]10~4, and e3"1)0]10~5. Note that

e+2)15]10~2. Now, picking u"0)6 for purposes of illustration, we have
K!u2+!0)240, which is an order of magnitude larger than e, consistent with
the foregoing analysis. For these values, the numerically evaluated &&large'' roots of
equation (20) are 6)0382$i 154)7960, while the roots predicted by equation (21) are
6)000$i 154.8031, with an error magnitude of 3)88]10~2 which is comparable to
e as expected. As another example, for u"0)37, closer to the critical speed, we have
K!u2+!1)69]10~2, which is comparable to e. In this case, the above
asymptotic error estimate of O(e) is not expected to be good. As expected, in this
case, the numerically obtained roots are 4)1703$i 40)3485, while the roots
predicted by equation (21) are 3)7000#i 40)9428, with an error magnitude of 0)758,
which is an order of magnitude larger than e. However, a reasonable approximation
is still obtained in this case. The preceding examples verify that, su$ciently far
from critical speed, equation (21) gives a good approximation to the roots of the
characteristic equation.

Note in equation (21) that the real parts are positive. Thus, beyond the critical
speed, the presence of su$ciently small #exural rigidity e3 and shear damping
f
2
"e2g

2
(with g

2
"O(1)) gives rise to two pairs of complex roots. One pair, O(1)

in magnitude, has negative real parts and causes standing waves of wavelength
O(1) to decay with increasing distance from the trailing edge of the contact
region. The other pair, large in magnitude, has large positive real parts and
causes small-wavelength standing waves (i.e., ripples) to appear over a short
distance near the leading edge of the contact region, as observed qualitatively in
the experiment.

We remark that in this case, the second derivative u
((

must be continuous at
both endpoints of the contact region, even if concentrated contact forces are present
(which they are). This gives us the extra boundary condition needed, in addition to



Figure 15. Standing wave solutions with non-zero #exural rigidity showing a ripple ahead of the
contact patch: K"0)12, f

1
"0)03, f

2
"2]10~4, e3"1)0]10~5 (e+2)154]10~2), u as labelled.

See text for discussion.
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those for the shear damping case (equation (17)). Using these, and parameter values
used in the example above, a numerical example is shown in Figure 15. The ripple
near the leading edge of contact is clearly visible.

8. QUALITATIVE COMPARISON WITH EXPERIMENTS

The model presented in this paper is capable of capturing several qualitative
features of the experimental system.

For small damping, the model predicts standing wave solutions beyond some
transition speed just above the theoretical critical speed, u

c
"JK. These standing

waves appear behind the contact region, and decay with increasing distance from
its trailing edge. The spatial attenuation rate of these waves decreases with
increasing rotation speed, while the amplitude and wavelength increase. All of these
features are observed in the experimental system.

With a small amount of shear damping and smaller #exural rigidity, the model
also predicts sharply decaying ripples near the leading edge of the contact region.
This feature is also observed in the experimental system.

We now brie#y present the predicted spatial frequency and attenuation rate (log
decrement in amplitude) for standing wave solutions. For simplicity, we ignore
both the shear damping f

2
as well as the small #exural rigidity discussed in the

previous section. For the model, we use K"0)12 as estimated from a static
de#ection test, and f

1
"0)03 as before. Predicted spatial frequency and spatial



Figure 16. Predicted trends from model, for K"0)12, f
1
"0)03, and no shear damping. Dotted

line marks u
c
"J0)12: (a) Spatial frequency, (b) log decrement.
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attenuation rate (log decrement between successive peaks) are plotted against u in
Figure 16. These curves are consistent with experimental observations (see Figure
6); in particular, it is seen that spatial frequency and attenuation rate both decrease
monotonically with increasing rotation speed, in the range studied.

9. PHYSICAL INTERPRETATION

It is worthwhile at this point, in light of the mathematical analysis carried out in
the previous sections, to address the question of the physical origin of the standing
waves. For simplicity, we consider only the case of zero shear damping and #exural
rigidity (i.e., Section 5).

The natural frequencies u
n

of free vibrations of the stationary tire, without
damping, may easily be found as

u
n
"J1#n2K for n"1, 2,2 ,

where we omit the n"0 or breathing mode, which is usually perceived as being not
important for standing waves (e.g., reference [14]). Using the resonance condition
proposed in reference [14], we "nd the predicted critical speed to be

min
n"1, 2,2,

u
n

n
"JK"u

c
(22)

which is correct (on interpreting the minimum as an in"mum). For zero damping,
the minimizing n in the resonance condition also gives the characteristic
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wavelength of the standing wave. In our case, since n"R, the wavelength
predicted by the resonance condition is exactly zero. For small damping, the
wavelength at the onset of the standing waves is small, which qualitatively matches
the prediction of the resonance condition as well.

However, though standing waves "rst appear at a speed near u
c

for small
damping, they persist for all higher rotation frequencies. To quote reference [1],
&&It is not possible to drive through to a higher speed where the tire again runs
smoothly (i.e., without large standing waves).'' As observed in experiment and
as predicted by our analysis, the size and shape of the standing wave vary
monotonically with rotation speed in the range studied. Hence, in spite of the
successful prediction of the critical speed by the resonance condition, for the system
with damping and well above critical speed it seems inappropriate to attribute the
standing waves to a resonance in the usual sense of the word.

Another popular interpretation of standing waves is based on the shock at
the leading contact edge. However, the magnitude of the shock has no e!ect on
the size or shape of the standing wave. By our analysis, these properties are
determined solely by the lift-o! conditions at the trailing contact edge along
with the roots of the characteristic equation. Thus, the shock does not cause
the standing wave, though the two appear at approximately the same speed for
light radial damping.

Finally, can we think of the formation of standing waves as resulting from
an instability? Such a view implies that the non-oscillatory steady state solution
continues to exist, but becomes unstable. However, since the eigenvalues r

1
and

r
2

are complex whenever standing waves exist, it is easy to see, by examination
of equation (10), that the only possible co-existing non-oscillatory solution
is a constant that cannot satisfy the boundary conditions. In other words,
once contact-induced standing waves have appeared, a non-oscillatory solution
no longer exists. Thus, an instability interpretation is not meaningful for this
system.

We therefore conclude that the formation of standing waves in tires is not
a resonance phenomenon (at least in the usual sense), is not caused by a shock
(though it is accompanied by one), and cannot be interpreted as an instability. Of
the three, while not completely justi"able, the resonance interpretation has some
merit in that it does appear to predict the correct critical speed.

Our approach in this paper has been to simply study the boundary value
problem that governs contact-induced standing waves. This approach has allowed
us to obtain some simple but useful insights. Mathematically, it is clear that the
standing waves are possible whenever the roots of the characteristic equation are
complex. Physically, the existence of complex roots re#ects the fact that the time
scale of the rotation is in some sense shorter than the time scale of the transient
vibrations excited by the contact forces. At speeds where standing waves are
possible, the boundary conditions determine the amplitudes of these waves. In
particular, for our system, the boundary conditions at the trailing contact edge
have by far the greatest in#uence on the amplitude of the standing wave. These
basic properties of the standing waves allow us to develop a technique for
suppressing the standing waves, as we show next.



Figure 17. Active suppression of the tire standing wave is possible with a single external force, as
predicted by the theory. The tire is rotating clockwise: (a) Standing wave, (b) suppressed.
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10. SUPPRESSION OF THE STANDING WAVE

Our analysis predicts that the leading edge of contact does not signi"cantly
in#uence the size or shape of the standing wave. The standing wave can therefore be
controlled by controlling the trailing edge behavior.

Based on this theoretical observation, we conducted one "nal, simple experiment.
A tire was rotated faster than its critical speed so that it had a standing wave on it.
A ball bearing was held by its inner race using a wrench, so that the outer race could
spin freely. This bearing was manually brought into contact with the rotating tire at
a point some small distance away from the trailing contact edge. The e!ect of
applying an external force at this point was examined. The results are shown in
Figure 17.

Figure 17(a) shows the tire with no external forces on it except from the &&ground''
contact, and the standing wave is seen to extend all the way around the tire. In
Figure 17(b), the e!ect is shown of applying a force at a point close to the ground
contact. The tire now has two contact regions: the old or ground contact, and the
new or bearing contact.

In the region between the trailing edge of ground contact and the leading edge of
bearing contact, as predicted by the theory, there is essentially no change in the
behavior of the tire: Figures 17(a) and (b) appear identical in this region.

On the other hand, in the region between the trailing edge of bearing contact and
the leading edge of ground contact, i.e., most of the tire as seen in Figure 17(b), the
size of the standing wave is determined by the conditions at the trailing edge of
bearing contact. As seen in the "gure, appropriate positioning of the bearing can
totally remove the standing wave behind the bearing contact.

This last experiment suggests a possible means for active suppression of standing
waves in such rotating systems. This approach should also work in the case of tires
with substantial amounts of #exural rigidity, although in such cases one might have
to apply two external forces, one on each side of the contact region.
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11. CONCLUSIONS

A small-scale tire test rig has been described which is capable of driving small
ballon tires past the speed at which standing waves "rst appear. Using video image
processing, we have obtained complete quantitative data sets for the standing waves
for various initial tire pressures and for a range of tire angular velocities. Beyond just
detecting the critical speed, the change in the spatial structure of the standing waves
with increasing tire rotational speed can be visualized in detail: the results are seen to
be in good qualitative agreement with other numerical work, as well with our own
simple model presented and analyzed in detail in this same paper.

The model presented here is amenable to analytical treatment, yet incorporates
geometrically realistic contact conditions and captures the qualitative behavior of
the experimental system studied in the laboratory.

A well-de"ned critical speed for the tire has been identi"ed in terms of model
parameters. Standing waves appear behind the trailing edge of contact when the
tire rotates steadily at speeds beyond this critical speed, as observed experimentally.
These standing waves have been examined as solutions to a non-linear boundary
value problem. Questions regarding boundary conditions, for the case of zero and
non-zero shear damping, have been addressed in detail.

For the case of zero shear damping it was found that beyond critical speed,
a concentrated contact force appears at the leading edge of the contact region. The
appearance of this concentrated contact force corresponds to a shock, taken here to
mean a discontinuity in u

(
. With non-zero shear damping, it was found that a small

concentrated contact force is present at the leading edge of contact even for
rotation speeds below the critical speed, and the shock (discontinuity in u

(
) is not

seen. Introduction of a small amount of #exural rigidity was found to cause small
ripples near the leading edge of contact, much as observed experimentally.

Theoretically predicted qualitative trends in standing wave wavelength and
spatial attenuation rate, as a function of rotation speed, compared favourably with
experimental measurements.

The analysis in this paper leads to the conclusion that above critical speed the
trailing edge boundary conditions essentially control the amplitude and wavelength
of the standing waves. Based on this observation, a means for active suppression of
standing waves in such rotating system was demonstrated experimentally.
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APPENDIX A: BOUNDARY CONDITIONS FOR ZERO SHEAR DAMPING

A.1. BEHAVIOR CLOSE TO CRITICAL SPEED

We will now show that slightly above critical speed (for DK!u2 D@1),
a concentrated force appears at the leading edge of contact, i.e., at /

B
. We will also

show that exactly at critical speed, the magnitude of the distributed contact force
P drops to zero at the trailing contact edge /

A
. Since P cannot be negative, this

leads to the hypothesis that P(/
A
)"0 above critical speed.

Let us "rst consider the situation slightly below critical speed. As u2 approaches
K from below, equations (6) and (9) show that the solution of u contains two
exponential parts, one (due to r

1
) which decreases at a "nite or bounded rate, and

another (due to r
2
A1) which increases very rapidly with / due to equation (9). This

implies the existence of a boundary layer at the leading edge of the contact patch,
i.e., at /

B
(see Figure 18). For a detailed discussion of such singularly perturbed

equations, see e.g., reference [27]. For completeness, a brief discussion of the main
ideas are presented below, in the context of the problem at hand.

Consider the second exponential term in the solution, given by C
2
er

2
/, and note

that just below critical speed r
2
A1. It follows that near the right boundary point

/
B
, where / is greatest, the magnitude of this term is much larger than at points far

removed from this boundary point. In fact, outside a narrow boundary layer near
/
B
, of width O(1/r

2
), this term has exponentially small magnitude and may be

ignored. Thus, far from /
B

and in particular close to /
A
, we may drop the second

term and simply write

u"
u2

1!u2
#C

1
er

1
/ (A.1)
Figure 18. Just below the critical speed u
c
"JK, the solution has a boundary layer near the right

endpoint /
B

of the domain, i.e., the leading edge of the contact region (for the case of zero shear
damping, f

1
'0, and u2(K).



Figure 19. The curves u"sec/!1!(u2/(1!u2)) and C
1
er

1
/ are tangential for a unique pair of

(C
1
, /

A
), for /

A
3 (0, 2n).
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(in the singular perturbations literature, equation (A.1) would be referred to as the
outer solution).

At endpoint /
A
, and in"nitesimally below critical speed, equation (10) may

therefore be written

sec /
A
!1!

u2

1!u2
"C

1
er

1
/
A ,

while equation (11) may be written as

sec/
A

tan/
A
"r

1
C

1
er

1
/
A .

The last two equations can now be solved for /
A

and C
1
, independently and without

knowledge of /
B

and C
2
. In particular, we can make a simple geometric

interpretation of these last two equations: the graph of C
1
er

1
/ makes grazing

contact with, or is tangent to, the graph of sec/!1!(u2/(1!u2)) at the point
/
A
. This geometrical interpretation is shown in Figure 19.
Now consider the situation slightly above critical speed. In this case, r

2
is large

and negative, while r
1

is essentially unchanged. Thus, the second exponential term
in u, given by C

2
er

2
/, now decays very rapdily, and may be neglected outside

a narrow boundary layer near /
A

of width O (1/ Dr
2
D). Far from the boundary layer,

and in particular close to /
B
, the solution is again given by

u"
u2

1!u2
#C

1
er

1
/ .
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Now we are in a position to prove our claim that slightly above critical speed
there must be a concentrated contact force at /

B
. We prove this by contradiction.

Accordingly, we assume that there is no concentrated contact force at /
B
. Similar to

the below critical speed case, we must now have the conditions

sec/
B
!1!

u2

1!u2
"C

1
er

1
/
B

and
sec/

B
tan/

B
"r

1
C

1
er

1
/

B .

Geometrically, as before, this means that the graph of C
1
er

1
/ must be tangent to

the graph of sec/!1!(u2/(1!u2)) at the point /
B
. However, as is clear from

Figure 19, such tangency cannot occur in the interval 3n/2(/(2n for any C
1
. In

other words, we have a contradiction, and conclude that there must be a concentrated
force at the leading contact edge /

B
, at speeds slightly above critical speed.

Since the magnitude of the concentrated force is unknown, the solution is
indeterminate at this point, and we need to impose an additional, suitable condition
in order to obtain a physically meaningful solution. Such an additional condition
can be found from the following observation.

As mentioned in Section 4, the magnitude of the distributed contact force P need
not be zero at the endpoints of the contact region. However, we now observe that
the distributed contact force P drops to zero exactly at the critical speed. As
discussed above, as the rotation speed approaches the critical speed from below, i.e.,
as u CJK, there is no boundary layer near /

A
. Consequently, the non-contacting

solution near /
A

has a bounded second derivatives as u C JK. Obviously, for
/
A
(n/2 (a "nite contact region), the second derivative of u in the contact region is

determined solely by contact geometry and is also bounded near /
A
. Both (contact

region and non-contact region) second derivatives being bounded as the critical
speed is approached, we can take the limit in each case and compare the two at /

A
.

Equation (5) becomes

!f
1
uu

(
(/

A
)!(1!u2) u (/

A
)#u2"P(/

A
)

in the contact region and

!f
1
uu

(
(/

A
)!(1!u2)u (/

A
)#u2"0

in the non-contacting region as u C JK. Since we must enforce both the contact
condition (i.e., u (/

A
)"sec/

A
!1) as well as the slope condition (i.e.,

u((/A
)"sec/

A
tan/

A
) on the endpoint /

A
, we "nd that P(/

A
) does become exactly

zero at the critical speed u"JK. For higher speeds, it is natural to assume that
P(/

A
) stays zero (since P cannot be negative). We thus impose the additional

boundary condition P(/
A
)"0 for u2'K.

In summary, above the critical speed, we retain the old boundary conditions of
continuity of displacements at /

A
and /

B
, drop the requirement of slope continuity

at /
B
, and use slope as well as curvature continuity at /

A
.
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A.2. BEHAVIOR FAR FROM THE CRITICAL SPEED

The boundary conditions proposed above for the case of zero shear damping
were derived using arguments that apply close to the critical speed. For the tire
rotating at speeds not too close to the critical speed, we can justify the same
boundary conditions by considering the case of zero shear damping to be the
limiting case of small shear damping. To this end, we rewrite the "ve boundary
conditions of equations (16) and (17) separately as follows:

u2

1!u2
#C

1
er

1
/

A#C
2
er

2
/
A#C

3
er

3
/
A"sec/

A
!1, (A.2)

u2

1!u2
#C

1
er

1
/
B#C

2
er

2
/

B#C
3
er

3
/
B"sec/

B
!1, (A.3)

r
1
C

1
er

1
/
A#r

2
C

2
er

2
/
A#r

3
C

3
er

3
/
A"sec/

A
tan/

A
, (A.4)

r
1
C

1
er

1
/

B#r
2
C

2
er

2
/
B#r

3
C

3
er

3
/
B"sec/

B
tan/

B
, (A.5)

r2
1
C

1
er

1
/
A#r2

2
C

2
er

2
/
A#r2

3
C

3
er

3
/
A"sec/

A
tan2/

A
#sec3/

A
. (A.6)

Recall from equation (14) that su$ciently far from critical speed r
1,2

are
bounded, while r

3
is O(1/f

2
). Moreover, as f

2
P0`, the roots r

1,2
are bounded,

while r
3

is O(1/f
2
). Moreover, as f

2
P0`, the roots r

1,2
approach the roots of the

unperturbed quadratic equation (7). Finally, note that r
3

is negative below the
critical speed and positive above the critical speed.

First consider the case below the critical speed. In this case, since C
3
er

3
/
B is

exponentially small compared to C
3
er

3
/
A, it can be dropped with negligible error

from equations (A.3) and (A.5), giving (respectively)

u2

1!u2
#C

1
er

1
/
B#C

2
er

2
/

B"sec/
B
!1

and
r
1
C

1
e r

1
/
B#r

2
C

2
er

2
/

B"sec/
B

tan/
B
.

Meanwhile, solving equation (A.6) for C
3
er

3
/
A, we "nd that it is an O(1/r2

3
)"O(f2

2
)

quantity. Thus, dropping it from equations (A.2) and (A.4) to obtain

u2

1!u2
#C

1
er

1
/
A#C

2
er

2
/
A"sec/

A
!1

and
r
1
C

1
e r

1
/

A#r
2
C

2
er

2
/
A"sec/

A
tan/

A

introducesO(f2
2
) and O(f

2
) errors, respectively. The four preceding equations can be

solved for the four unknowns C
1,2

and /
A,B

with O(f
2
) error; and as f

2
P0`, we

obtain exactly the boundary conditions presented earlier for the case of zero shear
damping and below critical speed (equations (10) and (11)).
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Now consider the case above critical speed. In this case, since C
3
er

3
/

A is
exponentially small compared to C

3
er

3
/
B, it can be dropped with negligible error

from equations (A.2), (A.4) and (A.6), giving (respectively)

u2

1!u2
#C

1
er

1
/

A#C
2
er

2
/

A"sec/
A
!1,

r
1
C

1
er

1
/
A#r

2
C

2
er

2
/
A"sec/

A
tan/

A

and

r2
1
C

1
er

1
/
A#r2

2
C

2
er

2
/

A"sec/
A

tan2/
A
#sec3/

A
.

Meanwhile, solving equation (A.5) for C
3
er

3
/
B, we "nd that it is an O(1/r

3
)"O(f

2
)

quantity. Thus, dropping it from equation (A.3) to obtain

u2

1!u2
#C

1
er

1
/

B#C
2
er

2
/
B"sec/

B
!1,

introduces an O(f
2
) error. The four preceding equations can be solved for the four

unknowns C
1,2

and /
A,B

with O(f
2
) error; and as f

2
P0`, we obtain exactly the

boundary conditions presented earlier for the case of zero shear damping and
above critical speed (equation (12)).

Note from the preceding calculations that, below and above critical speed, the
third exponential term C

3
er

3
/ is at most O(f

2
) at one boundary and exponentially

smaller away from that boundary. Thus, we can safely drop this term altogether in
the limit as f

2
P0`.

We thus conclude the following for the tire with in"nitesimally small shear
damping and not close to critical speed: the two bounded roots of the characteristic
equation r

1,2
, the coe$cients C

1,2
of the corresponding exponential functions, and

the boundary points /
A,B

are the same as for the zero shear damping case; the
contribution from the third exponential term is in"nitesimal; and the boundary
conditions determining C

1,2
and /

A,B
converge exactly to the same boundary

conditions as used for the zero shear damping case.
We thus conclude that the boundary conditions used for zero shear damping,

though motivated by consideration of speeds close to critical speed, are actually
valid even far from critical speed.

A.3. PHYSICAL JUSTIFICATION IN A SIMPLE LIMITING CASE

The boundary conditions used for zero shear damping have been justi"ed
above using asymptotic arguments. Moreover, these boundary conditions are con-
sistent with experimental observations as well (see Figure 12 and discussion in
Section 5.2.2).

Here, as an aid to intuition that might complement the preceding asymptotic
arguments, we present a purely physical argument in a simple limiting case.
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Let us reconsider the system shown schematically in Figure 9, for the special case
where the shear sti!ness and damping are both zero (hence, K"0). Then, for any
non-zero rotation speed, u2'K, i.e., any rotation speed is above critical speed. As
the system rotates, each mass point has a plastic collision with the ground at the
leading edge /

B
, giving rise to a concentrated force at that point in the continuum

limit. At the trailing edge /
A
, each mass point lifts o! the ground only when the

contact force becomes zero. Furthermore, on losing contact with the ground, each
mass point in the K"0 case executes radial oscillations. In lab-"xed co-ordinates,
these are seen as a standing wave in the rotating tire, with spatial frequency
inversely proportional to u (i.e., decreasing with rotation rate, as observed in
experiments on the tire).

Note that for this particularly simple limiting example, it is clear that the shock at
the leading edge of contact coincides with the appearance of, but does not cause, the
standing wave. It is also clear that the standing wave pattern formed on the tire is
a result of free oscillations whose amplitude is determined by the geometry of the
trailing contact edge, and so is not caused by resonance either.
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